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Let L be the Liouvillean of an ergodic quantum dynamical system (M, y, w).
We give a new proof of the theorem of Jadczyk that eigenvalues of L are simple
and form a subgroup of R. If w is a (y, b)-KMS state for some b ] 0 we show
that this subgroup is trivial, namely that zero is the only eigenvalue of L. Hence,
for KMS states ergodicity is equivalent to weak mixing.
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1. INTRODUCTION

Let M be a von Neumann algebra on the Hilbert space H and Mg its
predual. The positive elements of Mg satisfying w(1)=1 are called states.
Let y t be a s(Mg,M)-continuous group of automorphisms of M. The pair
(M, y) is called a Wg-dynamical system. In the algebraic formalism of
quantum statistical mechanics, the elements of M describe observables of
the physical system under consideration and the group y specifies their time
development.

A functional g ¥Mg is y-invariant if g p y t=g for all t. A triple
(M, y, w), where w is a y-invariant state, is called quantum dynamical
system. For our purposes we may assume without loss of generality that w
is a vector state, namely that w(A)=(W, AW) for some W ¥H, and that W
is a cyclic and separating vector for M. In what follows, (M, y, w) is a
given quantum dynamical system satisfying these properties.



The system (M, y, w) is called ergodic if for all A, B ¥M,

lim
TQ.

1
2T

F
T

−T
w(y t(A) B) dt=w(A) w(B),

and weak-mixing if

lim
TQ.

1
2T

F
T

−T
|w(y t(A) B)−w(A) w(B)|2 dt=0.

Clearly, weak-mixing implies ergodicity.
It is known that ergodic properties of quantum dynamical systems can

be characterized in spectral terms, in analogy with Koopman’s lemma of
classical ergodic theory. (1, 2) There exists a unique self-adjoint operator L on
H such that for A ¥M,

y t(A)=e itLAe−itL,

LW=0.

The operator L is a non-commutative analog of the classical Koopman
operator. One can show (see Theorem 4.2 in ref. 2) that the quantum
dynamical system (M, y, w) is ergodic iff zero is a simple eigenvalue of L
and weak-mixing iff L has no other eigenvalues except for a simple eigen-
value zero.

We denote by sp(A) the set of eigenvalues of a self-adjoint operator A.
In this paper we give a new proof of the following result of Jadczyk (3) (see
also [1, Theorem 4.3.27]).

Theorem 1.1. Assume that zero is a simple eigenvalue of L. Then
all eigenvalues of L are simple and sp(L) is a subgroup of R.

Remark. For dynamical systemswhich arise in classical ergodic theory
this result goes back to Halmos and von Neumann, see refs. 4 and 5.
The first results in the non-commutative case go back to ref. 6.

Our proof of Theorem 1.1 is somewhat simpler and perhaps more
transparent then the argument in refs. 1 and 3. Moreover, the method
of the proof yields some additional information. Let D be the modular
operator associated to W, L=log D and s t(A)=e itLAe−itL the group of
modular automorphisms of M. Since LW=0 the triple (M, s, w) is also a
quantum dynamical system.
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Theorem 1.2. Assume that zero is a simple eigenvalue of L and L.
Then

sp(L)=sp(L)={0}.

Let b ] 0 be a real parameter. w is called (y, b)-KMS state if for all
A, B ¥M there is a function FA, B, analytic inside the strip {z | 0 < sign b Im z
< |b|}, bounded and continuous on its closure, and satisfying the KMS-
boundary condition

FA, B(t)=w(Ay t(B)), FA, B(t+ib)=w(y t(B) A).

A (y, b)-KMS state describes a physical system in thermal equilibrium at
inverse temperature b.

By a theorem of Takesaki, (1) w is a (y, b)-KMS state iff L=−bL.
Therefore, Theorem 1.2 implies the following somewhat surprising result.

Theorem 1.3. Assume that the system (M, y, w) is ergodic and that
w is a (y, b)-KMS state for some b ] 0. Then the system is weak-mixing.

Theorems 1.2 and 1.3 show how modular structure associated to w
confines spectral structure of Liouvillean. Besides general interest, we
expect that these theorems will be technically useful in the study of concrete
models in quantum statistical mechanics. For an application of these
theorems to the study of ergodic properties of Pauli–Fierz systems we refer
the reader to ref. 7.

2. PROOFS

We assume that the reader is familiar with Tomita–Takesaki theory.
For notational purposes we recall some basic results of this theory.

Let D and J be the modular operator and the modular conjugation
associated to the vector W. For all A ¥M, JD1/2AW=AgW. Set L=log D.
Then

Je itL =e itLJ,

Je itL =e itLJ,

e itLe isL=e isLe itL.

(1)

By Tomita–Takesaki theorem, JMJ=M −.
The natural cone P is the closure of the set {AJAJW | A ¥M} …H.

The coneP is self-dual, namelyP={Y ¥H | (Y, F) \ 0 for all F ¥P}. For
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every state g ¥Mg, there is a unique vector Wg ¥P such that g(A)=
(Wg, AWg). Moreover, the state g is y-invariant iff LWg=0. In particular, if
zero is a simple eigenvalue of L, then w is the unique y-invariant state
inMg.

Proof of Theorem 1.1. Let E be an eigenvalue of L and WE a
(normalized) eigenvector associated to E. We show first that WE is a cyclic
and separating vector for M. Note that since JL=−LJ, W−E :=JWE is an
eigenvector of L associated to the eigenvalue −E.

The states w±E(A)=(W±E, AW±E) are y-invariant, and hence for all
A ¥M,

(W, AW)=(W±E, AW±E). (2)

Thus, if AWE=0, then AW=0 and A=0 (since W is separating). Hence WE
is separating. To prove that WE is cyclic, let P − be the orthogonal projection
on MWE and Q −=1−P −. Then Q − ¥M − and (WE, Q −WE)=0. Let Q :=
JQ −J. Then Q is an orthogonal projection, Q ¥M, and

0=(W−E, QW−E)

=(W, QW)=||QW||2.

Since W is separating, Q=0 and P −=1. Hence WE is cyclic.
Let U − be the linear map defined on MWE by U −AWE=AW. Since WE

is separating, the map U − is well-defined. Cyclicity of WE and Eq. (2) yield
that U − extends to a unitary map onH. Since

U −ABWE=ABW=AU −BWE,

U − ¥M −.
Let LE be the Liouvillean associated to WE. Clearly, LE=L−E and

U −LU −g=LE=L−E. (3)

Since zero is a simple eigenvalue of L, E is also a simple eigenvalue. Hence
eigenvalues of L are simple. Note that if U :=JU −J, then Eq. (3) implies

ULUg=L+E. (4)

Let now Ei, i=1, 2 be two eigenvalues of L and let U
−

i, Ui be as in
Eqs. (3) and (4). SetW :=U −2U1. ThenW is unitary and

WLWg=L+E1−E2.

It follows thatE2−E1 is an eigenvalue ofL and sp(L) is a subgroup ofR. L
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Proof of Theorem 1.2. By theorem 1.1 and the third relation in
Eq. (1) it suffices to prove that sp(L)={0}.

Let E ¥ sp(L), U −, U be as in Eqs. (3) and (4), and W=UU −. W is
unitary, WW ¥P and WL=LW. Since zero is a simple eigenvalue of L
we must haveWW=e ihW for some real phase h. Since P is a self-dual cone,
h=0 and

UJUJW=W.

Using that JW=W and U ¥M we derive

JUW=UgW=JD1/2UW

=JeL/2UW.

It follows that LUW=0, and since LUW=−EUW, E=0. Hence
sp(L)={0}. L
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